Biofunctionalization of CeF(3):Tb(3+) nanoparticles

Nanotechnology. 2007 Feb 21;18(7):075601. doi: 10.1088/0957-4484/18/7/075601. Epub 2007 Jan 12.

Abstract

CeF(3):Tb(3+) nanoparticles (short pillar-like morphology with an average length and width of 11 and 5 nm, respectively) were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with a SiO(2)-NH(2) layer, these CeF(3):Tb(3+) nanoparticles can be conjugated with biotin molecules (activated by thionyl chloride) and further with avidin. The as-formed CeF(3):Tb(3+) nanoparticles, CeF(3):Tb(3+) nanoparticles functionalized with amino groups, biotin conjugated amino-functionalized CeF(3):Tb(3+) nanoparticles and biotinylated CeF(3):Tb(3+) nanoparticles bonded with avidin were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), UV/vis absorption spectra and luminescence spectra, respectively. The biofunctionalization of the CeF(3):Tb(3+) nanoparticles has less effect on their luminescence properties, i.e. they still show strong green emission (from Tb(3+), with (5)D(4)-(7)F(5) at 543 nm as the most prominent group), indicative of the great potential for these CeF(3):Tb(3+) nanoparticles to be used as biological fluorescence probes.