The clinical benzothiophene SERM (BT-SERM), raloxifene, was compared with estrogens in protection of primary rat neurons against oxygen-glucose deprivation (OGD). Structure-activity relationships for neuroprotection were determined for a family of BT-SERMs displaying a spectrum of ERα and ERβ binding affinity and agonist/antagonist activity, leading to discovery of a neuroprotective pharmacophore, present in the clinically relevant SERMS, raloxifene and desmethylarzoxifene (DMA), for which submicromolar potency was observed for neuroprotection. BT-SERM neuroprotection did not correlate with binding to ER nor classical ER activity, however, both the neuroprotective SERMs and estrogens were shown, using pharmacological probes, to activate the same kinase signaling cascades. The antiestrogen ICI 182,780 inhibited the actions of estrogens, but not those of BT-SERMs, whereas antagonism of the G-protein coupled receptor, GPR30, was effective for both SERMs and estrogens. Since SERMs have antioxidant activity, ER-independent mechanisms were studied using the classical phenolic antioxidants, BHT and Trolox, and the Nrf2-dependent cytoprotective electrophile, sulforaphane. However, neuroprotection by these agents was not sensitive to GPR30 antagonism. Collectively, these data indicate that the activity of neuroprotective BT-SERMs is GPR30-dependent and ER-independent and not mediated by antioxidant effects. Comparison of novel BT-SERM derivatives and analogs identified a neuroprotective pharmacophore of potential use in design of novel neuroprotective agents with a spectrum of ER activity.