In this paper, we report on the first preparation of well-defined SiO(2)-coated graphene oxide (GO) nanosheets (SiO(2)/GO) without prior GO functionalization by combining sonication with sol-gel technique. The functional SiO(2)/GO nanocomposites (F-SiO(2)/GO) obtained by surface functionalization with NH(2) group were subsequently employed as a support for loading Ag nanoparticles (AgNPs) to synthesize AgNP-decorated F-SiO(2)/GO nanosheets (AgNP/F-SiO(2)/GO) by two different routes: (1) direct adsorption of preformed, negatively charged AgNPs; (2) in situ chemical reduction of silver salts. The morphologies of these nanocomposites were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is found that the resultant AgNP/F-SiO(2)/GO exhibits remarkable catalytic performance for H(2)O(2) reduction. This H(2)O(2) sensor has a fast amperometric response time of less than 2s. The linear range is estimated to be from 1×10(-4) M to 0.26 M (r=0.998) and the detection limit is estimated to be 4 × 10(-6) M at a signal-to-noise ratio of 3, respectively. We also fabricated a glucose biosensor by immobilizing glucose oxidase (GOD) into AgNP/F-SiO(2)/GO nanocomposite-modified glassy carbon electrode (GCE) for glucose detection. Our study demonstrates that the resultant glucose biosensor can be used for the glucose detection in human blood serum.
Copyright © 2011 Elsevier B.V. All rights reserved.