Objectives: The chemoprotective effect of the tetrahydrofuran lignan grandisin against DNA damage induced by cyclophosphamide (200 mg/kg) has been evaluated using the in vitro rodent micronucleus assay.
Methods: The effects of a daily oral administration of grandisin (2, 4, or 8 mg/kg) for five days before exposure to cyclophosphamide on the frequency of micronucleus in the bone marrow of normal mice exposed and unexposed to cyclophosphamide were investigated (n = 5 per group). Electrochemical measurements were applied to investigate whether the antimutagenic effects of grandisin could be, at least in part, a consequence of its or its metabolite's antioxidant properties.
Key findings: Grandisin did not show mutagenic effects on the bone marrow cells of exposed mice. On the other hand, the oral administration of grandisin (2, 4, or 8 mg/kg) per day reduced dose-dependently the frequency of micronucleus, induced by cyclophosphamide, in all groups studied. Cyclic voltammograms showed two peaks for a grandisin metabolite, which were absent for grandisin.
Conclusions: Under the conditions tested herein, this study has shown that mice treated with grandisin presented, in a dose-dependent manner, a protective effect against cyclophosphamide-induced mutagenicity. This effect could be, at least in part, associated to grandisin bioactivation. These data open new perspectives for further investigation into the toxicology and applied pharmacology of grandisin.
© 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.