Dexamethasone was conjugated to low molecular weight polyethylenimine (2kDa, PEI2k). Dexamethasone conjugated PEI2k (PEI2k-Dexa) was evaluated as a combined delivery carrier of dexamethasone and plasmid DNA (pDNA) in an animal model of lipopolysaccharide (LPS) induced acute lung injury (ALI). In vitro transfection of L2 lung epithelial cells, PEI2k-Dexa exhibited higher transfection efficiency than PEI2k or a simple mixture of PEI2k and dexamethasone. In addition, the PEI2k-Dexa/pβ-Luc complexes reduced the levels of pro-inflammatory cytokines in LPS activated Raw 264.7 macrophage cells. The anti-inflammatory effect of PEI2k-Dexa was higher than that of controls. The PEI2k-Dexa/pβ-Luc complexes were administered to mice via intratracheal injection. PEI2k-Dexa had higher pDNA delivery efficiency than PEI2k in the lung and decreased TNF-α and IL-6 in the lung homogenates and bronchoalveolar lavage (BAL) fluid compared with the controls. Furthermore, total protein and immunoglobulin M (IgM) concentrations in BAL fluid were reduced by the PEI2k-Dexa/pβ-Luc complexes. The intratracheal injection of the PEI2k-Dexa/pcDNA-EGFP complexes in the ALI model showed higher EGFP expression compared with PEI2k. Hematoxylin and eosin (H&E) staining showed that PEI2k-Dexa reduced inflammatory reaction in the lung. Therefore, PEI2k-Dexa may be useful for combination gene and drug therapy for ALI.
Copyright © 2011 Elsevier B.V. All rights reserved.