TLR2 stimulation drives human naive and effector regulatory T cells into a Th17-like phenotype with reduced suppressive function

J Immunol. 2011 Sep 1;187(5):2278-90. doi: 10.4049/jimmunol.1003715. Epub 2011 Jul 20.

Abstract

Naturally occurring CD4(+)CD25(+)FOXP3(+) regulatory T cells suppress the activity of pathogenic T cells and prevent development of autoimmune responses. There is growing evidence that TLRs are involved in modulating regulatory T cell (Treg) functions both directly and indirectly. Specifically, TLR2 stimulation has been shown to reduce the suppressive function of Tregs by mechanisms that are incompletely understood. The developmental pathways of Tregs and Th17 cells are considered divergent and mutually inhibitory, and IL-17 secretion has been reported to be associated with reduced Treg function. We hypothesized that TLR2 stimulation may reduce the suppressive function of Tregs by regulating the balance between Treg and Th17 phenotype and function. We examined the effect of different TLR2 ligands on the suppressive functions of Tregs and found that activation of TLR1/2 heterodimers reduces the suppressive activity of CD4(+)CD25(hi)FOXP3(low)CD45RA(+) (naive) and CD4(+)CD25(hi)FOXP3(hi)CD45RA(-) (memory or effector) Treg subpopulations on CD4(+)CD25(-)FOXP3(-)CD45RA(+) responder T cell proliferation while at the same time enhancing the secretion of IL-6 and IL-17, increasing RORC, and decreasing FOXP3 expression. Neutralization of IL-6 or IL-17 abrogated Pam3Cys-mediated reduction of Treg suppressive function. We also found that, in agreement with recent observations in mouse T cells, TLR2 stimulation can promote Th17 differentiation of human T helper precursors. We conclude that TLR2 stimulation, in combination with TCR activation and costimulation, promotes the differentiation of distinct subsets of human naive and memory/effector Tregs into a Th17-like phenotype and their expansion. Such TLR-induced mechanism of regulation of Treg function could enhance microbial clearance and increase the risk of autoimmune reactions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation / immunology*
  • Cell Separation
  • Flow Cytometry
  • Humans
  • Lymphocyte Activation / immunology
  • Phenotype
  • T-Lymphocyte Subsets / cytology
  • T-Lymphocyte Subsets / immunology*
  • T-Lymphocyte Subsets / metabolism
  • T-Lymphocytes, Regulatory / cytology
  • T-Lymphocytes, Regulatory / immunology*
  • T-Lymphocytes, Regulatory / metabolism
  • Th17 Cells / cytology
  • Th17 Cells / immunology*
  • Th17 Cells / metabolism
  • Toll-Like Receptor 2 / immunology*
  • Toll-Like Receptor 2 / metabolism

Substances

  • TLR2 protein, human
  • Toll-Like Receptor 2