β-myosin heavy chain is induced by pressure overload in a minor subpopulation of smaller mouse cardiac myocytes

Circ Res. 2011 Sep 2;109(6):629-38. doi: 10.1161/CIRCRESAHA.111.243410. Epub 2011 Jul 21.

Abstract

Rationale: Induction of the fetal hypertrophic marker gene β-myosin heavy chain (β-MyHC) is a signature feature of pressure overload hypertrophy in rodents. β-MyHC is assumed present in all or most enlarged myocytes.

Objective: To quantify the number and size of myocytes expressing endogenous β-MyHC by a flow cytometry approach.

Methods and results: Myocytes were isolated from the left ventricle of male C57BL/6J mice after transverse aortic constriction (TAC), and the fraction of cells expressing endogenous β-MyHC was quantified by flow cytometry on 10,000 to 20,000 myocytes with use of a validated β-MyHC antibody. Side scatter by flow cytometry in the same cells was validated as an index of myocyte size. β-MyHC-positive myocytes constituted 3 ± 1% of myocytes in control hearts (n=12), increasing to 25 ± 10% at 3 days to 6 weeks after TAC (n=24, P<0.01). β-MyHC-positive myocytes did not enlarge with TAC and were smaller at all times than myocytes without β-MyHC (≈70% as large, P<0.001). β-MyHC-positive myocytes arose by addition of β-MyHC to α-MyHC and had more total MyHC after TAC than did the hypertrophied myocytes that had α-MyHC only. Myocytes positive for β-MyHC were found in discrete regions of the left ventricle in 3 patterns: perivascular, in areas with fibrosis, and in apparently normal myocardium.

Conclusions: β-MyHC protein is induced by pressure overload in a minor subpopulation of smaller cardiac myocytes. The hypertrophied myocytes after TAC have α-MyHC only. These data challenge the current paradigm of the fetal hypertrophic gene program and identify a new subpopulation of smaller working ventricular myocytes with more myosin.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Aortic Diseases / metabolism
  • Aortic Diseases / pathology
  • Flow Cytometry / methods
  • Hypertrophy, Left Ventricular / metabolism*
  • Hypertrophy, Left Ventricular / pathology
  • Hypertrophy, Left Ventricular / physiopathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Myocardial Contraction / physiology
  • Myocytes, Cardiac / metabolism*
  • Myocytes, Cardiac / pathology
  • Myosin Heavy Chains / biosynthesis*
  • Ventricular Myosins / physiology
  • Ventricular Pressure / physiology*

Substances

  • Myh7 protein, mouse
  • Ventricular Myosins
  • Myosin Heavy Chains