Tissue Tropism of SV40 Transformation of Human Cells: Role of the Viral Regulatory Region and of Cellular Oncogenes

Genes Cancer. 2010 Oct;1(10):1008-20. doi: 10.1177/1947601910395580.

Abstract

SV40 has been detected prevalently in a limited panel of human tumors: mesothelioma, bone and brain tumors, and lymphoma. These are the same tumor types that are specifically induced by SV40 when injected into hamsters, a finding that has raised concerns about the possible pathogenic role of SV40 in humans. Two different SV40 isolates differing in the number of 72-bp elements in the virus regulatory region, archetypal SV40 (1ESV40), which contains one 72 bp, and nonarchetypal SV40 (wtSV40), which contains two 72 bp, have been detected in human tumors. 1ESV40 has been prevalently detected in brain tumors, with wtSV40 prevalently in mesothelioma. The apparent different cell tropism could be related to the virus (i.e., possibly to the number of 72-bp elements) and to different expression of cellular genes, known to play a critical role in SV40-mediated transformation of human cells, such as Notch-1 and c-Met. To test for possible differences in tissue tropism, we infected primary human mesothelial cells (HM) and primary human astrocytes (Ast) with 1ESV40 and with wtSV40 from 2 different SV40 strains, 776 and Baylor. All viruses transformed astrocytes; only wtSV40 transformed HM. Intracellular signaling of c-Met and Notch-1 was differently induced by these 2 viruses in HM and Ast. Differences in Notch-1 expression and signaling (i.e., downstream effectors, c-Myc, HEY-1, HES-1, and HEY-L) appeared to influence SV40-mediated transformation of primary astrocytes and mesothelial cells. Our results provide a biological rationale to the observation that 1ESV40 is prevalently detected in brain tumors and wtSV40 in mesotheliomas.

Keywords: 72-bp elements; Notch-1; SV40; astrocytes; mesothelial cells.