Adeno-associated viral (AAV) vectors are gene vectors of choice for the development of gene therapy treatments for many rare diseases affecting various tissues including retina, central nervous system, liver, and muscle. The AAV based gene therapy approach became conceivable only after the development of easily scalable production systems including the Sf9 cell/baculovirus expression system. Since the establishment of the production of AAV in the Sf9/baculovirus system by the group of Rob Kotin, this new production system has largely been developed for optimizing the large scale production of different serotypes of AAV for preclinical and clinical purposes. Today this manufacturing system allows for the production of purified vector genome (vg) quantities of up to 2 × 10(15) for AAV1 using a 50L reactor and the scale up to larger reactor volumes is paralleled by a corresponding increase in the vector yield. This review presents the principles and achievements of the Sf9/baculovirus system for the production of AAV in comparison to other expression systems based on mammalian cells. In addition, new developments and improvements, which have not yet been implemented at a large scale, and perspectives for further optimization of this production system will be discussed. All of these achievements as well as further process intensifications are urgently needed for the production of clinical doses for the treatment of neuromuscular diseases for which estimated doses of up to 10(14)vg/kg body mass are required.
Copyright © 2011. Published by Elsevier Inc.