Background: The goal of this study was to evaluate in vitro and in vivo the effects of up-regulation of the proangiogenic hypoxia inducible factor (HIF)-1α induced by dimethyloxalylglycine on endothelial cell cultures and on skin flap survival.
Methods: Human umbilical vein endothelial cell cultures were exposed to hypoxic conditions, to dimethyloxalylglycine, and to cobalt chloride for up to 24 hours. Expression of HIF-1α and vascular endothelial growth factor (VEGF) in cell culture media was analyzed. In vivo, 20 male Wistar rats were assigned randomly to either the treatment group (dimethyloxalylglycine intraperitoneal injection, n = 10) or the control group (saline intraperitoneal injection, n = 10). A dorsal skin flap was raised in all animals and sutured back into place. Flap survival was evaluated on postoperative day 7 by laser Doppler and digital planimetry.
Results: In vitro treatment of human umbilical vein endothelial cells during a 24-hour period showed a significant elevation of VEGF expression with dimethyloxalylglycine exposure (92 ± 35 pg/mg total cellular protein) or hypoxia exposure (88 ± 21 pg/mg total cellular protein) compared with controls (23 ± 10 pg/mg total cellular protein) (p < 0.05 for both). In vivo experiments showed a significant decrease of flap necrosis in the treatment group animals versus controls (35.95 ± 5.03 percent versus 44.42 ± 5.18 percent, p < 0.05). The laser Doppler evaluation revealed significantly increased blood flow in the proximal two-thirds of the flap in the treatment group compared with the control group (p < 0.05).
Conclusion: Dimethyloxalylglycine treatment significantly increases VEGF and HIF-1α expression in endothelial cell cultures and enhances skin flap survival in vivo in a rat model.