Since the Edmonton trials, insulin independence can reproducibly be achieved after islet transplantation. However, a majority of patients resume insulin treatment in the first 5 years after transplantation. Several mechanisms have been proposed but are difficult to pinpoint in one particular patient. Current tools for the metabolic monitoring of islet grafts indicate islet dysfunction when it is too late to take action. Noninvasive imaging of transplanted islets could be used to study β-cell mass and β-cell function just after infusion, during vascularization or autoimmune and alloimmune attacks. This review will focus on the most recent advances in various imaging techniques (bioluminescence imaging, fluorescence optical imaging, MRI, and positron emission tomography). Emphasis will be placed on pertinent approaches for translation to human practice.