The crystal structure of TeRbcX, a RuBisCO assembly chaperone from the cyanobacterium Thermosynechococcus elongatus, a thermophilic organism, has been determined at 1.7 Å resolution. TeRbcX has an unusual cysteine residue at position 103 that is not found in RbcX proteins from mesophilic organisms. Unlike wild-type TeRbcX, a mutant protein with Cys103 replaced by Ala (TeRbcX-C103A) could be readily crystallized. The structure revealed that the overall fold of the TeRbcX homodimer is similar to those of previously crystallized RbcX proteins. Normal-mode analysis suggested that TeRbcX might adopt an open or closed conformation through a hinge movement pivoted on a kink in two long α4 helices. This type of conformational transition is presumably connected to RbcL (the large RuBisCO subunit) binding during the chaperone function of the RuBisCO assembly.