UV-mediated DNA damage and repair are important mechanisms in research on UV-induced carcinogenesis. UV-induced DNA-damage and repair can be determined by immunohistochemical staining of photoproduct positive nuclei of keratinocytes in the epidermis. We developed a new method of analysing and quantifying thymine dimer (TT-CPD) positive cells in the epidermis. Normal skin of healthy controls was exposed to UVB ex vivo and in vivo. Skin samples were immunohistochemically stained for TT-CPDs. Digital images of the epidermis were quantified for TT-CPDs both visually and digitally. There was a UVB-dose dependent induction of TT-CPDs present in the ex vivo UVB-irradiated skin samples. The linear measurement range of the digital quantification was increased compared to the manual counting. The average 24-hour repair rate of the initiated TT-CPDs elicited by the UVB irradiation at T=0 of the 8 HCs showed a 34% decrease of TT-CPD photoproducts by the manual counting method and a 51% decrease determined by digital counting. The digital quantification method improves immunohistochemical quantification of DNA photo damage. It is more sensitive in measuring the extent of DNA-damage per nucleus.
Copyright © 2011 Elsevier B.V. All rights reserved.