High pressure superconductivity in iron-based superconductor FeSe(0.5)Te(0.5) has been studied up to 15 GPa and 10 K using an eight probe designer diamond anvil in a diamond anvil cell device. Four probe electrical resistance measurements show the onset of superconductivity (T(c)) at 14 K at ambient pressure with T(c) increasing with increasing pressure to 19 K at a pressure of 3.6 GPa. At higher pressures beyond 3.6 GPa, T(c) decreases and extrapolation suggests non-superconducting behavior above 10 GPa. The loss of superconductivity coincides with the pressure induced disordering of the Fe(SeTe)(4) tetrahedra reported at 11 GPa in x-ray diffraction studies at ambient temperature.