Electrical transport of bottom-up grown single-crystal Si(1-x)Ge(x) nanowire

Nanotechnology. 2008 Jun 4;19(22):225203. doi: 10.1088/0957-4484/19/22/225203. Epub 2008 Apr 25.

Abstract

In this work, we fabricated an Si(1-x)Ge(x) nanowire (NW) metal-oxide-semiconductor field-effect transistor (MOSFET) by using bottom-up grown single-crystal Si(1-x)Ge(x) NWs integrated with HfO(2) gate dielectric, TaN/Ta gate electrode and Pd Schottky source/drain electrodes, and investigated the electrical transport properties of Si(1-x)Ge(x) NWs. It is found that both undoped and phosphorus-doped Si(1-x)Ge(x) NW MOSFETs exhibit p-MOS operation while enhanced performance of higher I(on)∼100 nA and I(on)/I(off)∼10(5) are achieved from phosphorus-doped Si(1-x)Ge(x) NWs, which can be attributed to the reduction of the effective Schottky barrier height (SBH). Further improvement in gate control with a subthreshold slope of 142 mV dec(-1) was obtained by reducing HfO(2) gate dielectric thickness. A comprehensive study on SBH between the Si(1-x)Ge(x) NW channel and Pd source/drain shows that a doped Si(1-x)Ge(x) NW has a lower effective SBH due to a thinner depletion width at the junction and the gate oxide thickness has negligible effect on effective SBH.