Hyperphosphorylation of mouse cardiac titin contributes to transverse aortic constriction-induced diastolic dysfunction

Circ Res. 2011 Sep 30;109(8):858-66. doi: 10.1161/CIRCRESAHA.111.246819. Epub 2011 Aug 11.

Abstract

Rationale: Mechanisms underlying diastolic dysfunction need to be better understood.

Objective: To study the role of titin in diastolic dysfunction using a mouse model of experimental heart failure induced by transverse aortic constriction.

Methods and results: Eight weeks after transverse aortic constriction surgery, mice were divided into heart failure (HF) and congestive heart failure (CHF) groups. Mechanical studies on skinned left ventricle myocardium measured total and titin-based and extracellular matrix-based passive stiffness. Total passive stiffness was increased in both HF and CHF mice, and this was attributable to increases in both extracellular matrix-based and titin-based passive stiffness, with titin being dominant. Protein expression and titin exon microarray analysis revealed increased expression of the more compliant N2BA isoform at the expense of the stiff N2B isoform in HF and CHF mice. These changes are predicted to lower titin-based stiffness. Because the stiffness of titin is also sensitive to titin phosphorylation by protein kinase A and protein kinase C, back phosphorylation and Western blot assays with novel phospho-specific antibodies were performed. HF and CHF mice showed hyperphosphorylation of protein kinase A sites and the proline glutamate valine lysine (PEVK) S26 protein kinase C sites, but hypophosphorylation of the PEVK S170 protein kinase C site. Protein phosphatase I abolished differences in phosphorylation levels and normalized titin-based passive stiffness levels between control and HF myocardium.

Conclusion: Transverse aortic constriction-induced HF results in increased extracellular matrix-based and titin-based passive stiffness. Changes in titin splicing occur, which lower passive stiffness, but this effect is offset by hyperphosphorylation of residues in titin spring elements, particularly of PEVK S26. Thus, complex changes in titin occur that combined are a major factor in the increased passive myocardial stiffness in HF.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aortic Diseases / complications
  • Aortic Diseases / metabolism*
  • Connectin
  • Heart Failure, Diastolic / etiology
  • Heart Failure, Diastolic / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Muscle Proteins / metabolism*
  • Myocardium / metabolism*
  • Phosphorylation / physiology
  • Protein Kinases / metabolism*
  • Ventricular Dysfunction, Left / etiology
  • Ventricular Dysfunction, Left / metabolism

Substances

  • Connectin
  • Muscle Proteins
  • Protein Kinases