It is clear that the well-described phenomenon of epithelial-mesenchymal transition (EMT) plays a pivotal role in embryonic development, wound healing, tissue regeneration, organ fibrosis and cancer progression. EMTs have been classified into three subtypes based on the functional consequences and biomarker context in which they are encountered. This review will highlight findings on type II EMT as a direct contributor to the kidney myofibroblast population in the development of renal fibrosis, specifically in diabetic nephropathy, the signalling molecules and the pathways involved in type II EMT and changes in the expression of specific miRNA with the EMT process. These findings have provided new insights into the activation and development of EMT during disease processes and may lead to possible therapeutic interventions to suppress EMTs and potentially reverse organ fibrosis.