The ε-Al(13) Keggin aluminum hydroxide clusters are essential models in establishing molecular pathways for geochemical reactions. Enthalpies of formation are reported for two salts of aluminum centered ε-Keggin clusters, Al(13) selenate, (Na(AlO(4))Al(12)(OH)(24)(SeO(4))(4)•12H(2)O) and Al(13) sulfate, (NaAlO(4)Al(12)(OH)(24)(SO(4))(4)•12H(2)O). The measured enthalpies of solution, ΔH(sol), at 28 °C in 5 N HCl for the ε-Al(13) selenate and sulfate are -924.57 (± 3.83) and -944.30 ( ± 5.66) kJ·mol(-1), respectively. The enthalpies of formation from the elements, ΔH(f,el), for Al(13) selenate and sulfate are -19,656.35 ( ± 67.30) kJ·mol(-1), and -20,892.39 ( ± 70.01) kJ·mol(-1), respectively. In addition, ΔH(f,el) for sodium selenate decahydrate was calculated using data from high temperature oxide melt solution calorimetry measurements: -4,006.39 ( ± 11.91) kJ·mol(-1). The formation of both ε-Al(13) Keggin cluster compounds is exothermic from oxide-based components but energetically unfavorable with respect to a gibbsite-based assemblage. To understand the relative affinity of the ε-Keggin clusters for selenate and sulfate, the enthalpy associated with two S-Se exchange reactions was calculated. In the solid state, selenium is favored in the Al(13) compound relative to the binary chalcogenate, while in 5 N HCl, sulfur is energetically favored in the cluster compound compared to the aqueous solution. This contribution represents the first thermodynamic study of ε-Al(13) cluster compounds and establishes a method for other such molecules, including the substituted versions that have been created for kinetic studies. Underscoring the importance of ε-Al(13) clusters in natural and anthropogenic systems, these data provide conclusive thermodynamic evidence that the Al(13) Keggin cluster is a crucial intermediate species in the formation pathway from aqueous aluminum monomers to aluminum hydroxide precipitates.