Hybridoma fusions with hamster hosts were undertaken to generate mAbs to mouse spleen dendritic cells. Two mAb were obtained and used to uncover the distinct integrins of these APC. One, 2E6, bound a determinant common to all members of the CD11/CD18 family, most likely the shared 90 kD CD18 beta chain. 2E6 immunoprecipitated the characteristic beta 2 integrin heterodimers from lymphocytes (p180, 90; CD11a) and macrophages (p170,90; CD11b), but from dendritic cells, a p150,90 (presumably CD11c) integrin was the predominant species. 2E6 inhibited the binding function of the CD11a and CD11b integrins on B cells and macrophages in appropriate assays, but 2E6 exerted little or no inhibition on the clustering of dendritic cells to T cells early in primary MLR, suggesting a CD11/CD18-independent mechanism for this binding. The second mAb, N418, precipitated a 150, 90 kD heterodimer that shared the 2E6 CD18 epitope. This N418 epitope may be the murine homologue of the previously characterized human CD11c molecule, but the epitope was only detected on dendritic cells. N418 did not react with peritoneal macrophages, anti-Ig-induced spleen B blasts, or bulk lymph node cells. When used to stain sections of spleen, N418 stained dendritic cells in the T-dependent areas, much like anti-class II mAbs that were also generated in these fusions. In addition, N418 revealed nests of dendritic cells that punctuated the rim of marginal zone macrophages between red and white pulp. This localization positioned most dendritic cells at regions where arterial vessels and T cells enter the white pulp. We conclude that the p150, 90 heterodimer is the major beta 2 integrin of spleen dendritic cells, and we speculate that it may function to localize these APC at sites that permit access to the recirculating pool of resting T cells.