Background: Many of the inflammatory proteins that are expressed in asthmatic airways are regulated, at least partially, by nuclear factor (NF)-κB. Blockade of NF-κB activity has resulted in attenuation of the cardinal features of asthma. Thus, delineating the mechanisms involved in NF-κB activation in asthma might provide an interesting approach to improving the management of asthma. However, despite its importance, the mechanism for NF-κB activation in asthma has not yet been determined.
Objective: To examine the role of IgE and IgG antibodies (Abs) in the activation of NF-κB in mouse lungs.
Methods: To examine the effect of IgE, mice underwent intratracheal (i.t.) instillation of an IgE immune complex (IgE-IC) (anti-2,4-dinitrophenyl hapten (DNP) IgE + DNP-BSA or DNP-OVA) and anaphylactogenic anti-IgE (LO-ME-2). For IgG, mice underwent i.t. instillation with a complex of anti-chicken gamma globulin (CGG) IgG1 mAb + CGG. NF-κB activation was determined by gel shift assay. Small interfering RNA was used for blockade of p50 expression. The effect of tumor necrosis factor (TNF) blockade was determined using anti-TNF Ab. A previously established murine model of asthma was used to assess airway hyperresponsiveness (AHR).
Results: A single i.t. instillation of either IgE-IC or LO-ME-2 failed to induce activation of NF-κB in the lungs. In contrast, single i.t. instillation of IgG-IC was capable of inducing NF-κB activation, as well as NF-κB-dependent proinflammatory molecules, such as TNF and CXC chemokines. Pretreatment of p50 small interfering RNA decreased bronchoalveolar lavage fluid levels of TNF and macrophage inflammatory protein-2 induced by IgG-IC instillation. Single i.t. instillation of IgG-IC caused the recruitment of neutrophils and macrophages into the airway and TNF-mediated late AHR, but failed to induce Th2 cell-mediated asthmatic phenotypes.
Conclusion: IgG, but not IgE, is the major Ab that induces not only NF-κB activation and NF-κB-dependent proinflammatory molecules in the lungs but also subsequent recruitment of inflammatory cells into the airway and TNF-mediated late AHR.