Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults

Nutr Metab (Lond). 2011 Aug 22:8:59. doi: 10.1186/1743-7075-8-59.

Abstract

Background: Dietary total antioxidant capacity (TAC) has been assumed as a useful tool to assess the relationship between the cumulative antioxidant food capacity and several chronic disorders. The aim of this cross-sectional study was to investigate the potential relationships of dietary TAC with adiposity, metabolic and oxidative stress markers in healthy young adults.

Methods: This study enrolled 266 healthy subjects (105 men/ 161 women; 22 ± 3 years-old; 22.0 ± 2.7 kg/m2). Dietary intake, anthropometry, blood pressure, lifestyle features, and biochemical data were assessed with validated procedures.

Results: In linear regression analyses, dietary TAC values were inversely associated with glycemia, total cholesterol:HDL-c ratio, triglycerides and oxidized-LDL concentrations, and positively associated with HDL-c concentrations, independently of gender, age, smoking status, physical activity, vitamin use supplement, waist circumference, energy intake, fatty acid intake. In addition, plasma TAC was negatively correlated with ox-LDL concentrations (r= -0.20, P = 0.003), independently of the assessed confounding variables. Finally, dietary TAC values were inversely related to waist circumference values (r= -0.17, P = 0.005) as well as to lower mild central obesity occurrence (waist circumference ≥ 80/ 94 cm for women/ men, respectively).

Conclusion: Dietary TAC values are inversely associated with glucose and lipid biomarkers as well as with central adiposity measurements in healthy young adults, indicating dietary TAC as a useful tool to assess the health benefits of cumulative antioxidant capacity from food intake. In addition, the independent and inverse relationships of ox-LDL concentrations with dietary and plasma TAC respectively suggest a putative role of antioxidant rich-diet in the link between redox state and atherogenesis at early stage.