Effects of surface interactions on peptide aggregate morphology

J Chem Phys. 2011 Aug 28;135(8):085102. doi: 10.1063/1.3624929.

Abstract

The formation of peptide aggregates mediated by an attractive surface is investigated using replica exchange molecular dynamics simulations with a coarse-grained peptide representation. In the absence of a surface, the peptides exhibit a range of aggregate morphologies, including amorphous aggregates, β-barrels and multi-layered fibrils, depending on the chiral stiffness of the chain (a measure of its β-sheet propensity). In contrast, aggregate morphology in the presence of an attractive surface depends more on surface attraction than on peptide chain stiffness, with the surface favoring fibrillar structures. Peptide-peptide interactions couple to peptide-surface interactions cooperatively to affect the assembly process both qualitatively (in terms of aggregate morphology) and quantitatively (in terms of transition temperature and transition sharpness). The frequency of ordered fibrillar aggregates, the surface binding transition temperature, and the sharpness of the binding transition all increase with both surface attraction and chain stiffness.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Models, Chemical
  • Molecular Dynamics Simulation
  • Peptides / chemistry*
  • Surface Properties*
  • Temperature

Substances

  • Peptides