Bioconversion of ginsenosides Rb(1), Rb(2), Rc and Rd by novel β-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: cloning, expression, and enzyme characterization

J Biotechnol. 2011 Nov 10;156(2):125-33. doi: 10.1016/j.jbiotec.2011.07.024. Epub 2011 Aug 27.

Abstract

A new β-glucosidase gene (bglSp) was cloned from the ginsenoside converting Sphingomonas sp. strain 2F2 isolated from the ginseng cultivating filed. The bglSp consisted of 1344 bp (447 amino acid residues) with a predicted molecular mass of 49,399 Da. A BLAST search using the bglSp sequence revealed significant homology to that of glycoside hydrolase superfamily 1. This enzyme was overexpressed in Escherichia coli BL21 (DE3) using a pET21-MBP (TEV) vector system. Overexpressed recombinant enzymes which could convert the ginsenosides Rb(1), Rb(2), Rc and Rd to the more pharmacological active rare ginsenosides gypenoside XVII, ginsenoside C-O, ginsenoside C-Mc(1) and ginsenoside F(2), respectively, were purified by two steps with Amylose-affinity and DEAE-Cellulose chromatography and characterized. The kinetic parameters for β-glucosidase showed the apparent K(m) and V(max) values of 2.9±0.3 mM and 515.4±38.3 μmol min(-1)mg of protein(-1) against p-nitrophenyl-β-d-glucopyranoside. The enzyme could hydrolyze the outer C3 glucose moieties of ginsenosides Rb(1), Rb(2), Rc and Rd into the rare ginsenosides Gyp XVII, C-O, C-Mc(1) and F(2) quickly at optimal conditions of pH 5.0 and 37°C. A little ginsenoside F(2) production from ginsenosides Gyp XVII, C-O, and C-Mc(1) was observed for the lengthy enzyme reaction caused by the side ability of the enzyme.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics*
  • Bacterial Proteins / metabolism
  • Cloning, Molecular
  • Ginsenosides / metabolism
  • Glycosides / metabolism
  • Hydrolysis
  • Kinetics
  • Sphingomonas / enzymology*
  • Sphingomonas / genetics
  • Substrate Specificity
  • beta-Glucosidase / genetics*
  • beta-Glucosidase / metabolism

Substances

  • Bacterial Proteins
  • Ginsenosides
  • Glycosides
  • beta-Glucosidase