Genetic suppression of atrial fibrillation using a dominant-negative ether-a-go-go-related gene mutant

Heart Rhythm. 2012 Feb;9(2):265-72. doi: 10.1016/j.hrthm.2011.09.008. Epub 2011 Sep 9.

Abstract

Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Gene therapy-dependent modulation of atrial electrophysiology may provide a more specific alternative to pharmacological and ablative treatment strategies.

Objective: We hypothesized that genetic inactivation of atrial repolarizing ether-a-go-go-related gene (ERG) K(+) currents using a dominant-negative mutant would provide rhythm control in AF.

Methods: Ten domestic swine underwent pacemaker implantation and were subjected to atrial burst pacing to induce persistent AF. Animals were then randomized to receive either AdCERG-G627S to suppress ERG/I(Kr) currents or green fluorescent protein (AdGFP) as control. Adenoviruses were applied using a novel hybrid technique combining atrial virus injection and epicardial electroporation to increase transgene expression.

Results: In pigs treated with AdCERG-G627S, the onset of persistent AF was prevented (n = 2) or significantly delayed compared with AdGFP controls (12 ± 2.1 vs. 6.2 ± 1.3 days; P < .001) during 14-day follow-up. Effective refractory periods were prolonged in the AdCERG-G627S group compared with AdGFP animals (221.5 ± 4.7 ms vs. 197.0 ± 4.7 ms; P < .006). Impairment of left ventricular ejection fraction (LVEF) during AF was prevented by AdCERG-G627S application (LVEF(CERG-G627S) = 62.1% ± 4.0% vs. LVEF(GFP) = 30.3% ± 9.1%; P < .001).

Conclusion: Inhibition of ERG function using atrial AdCERG-G627S gene transfer suppresses or delays the onset of persistent AF by prolongation of atrial refractoriness in a porcine model. Targeted gene therapy represents an alternative to pharmacological or ablative treatment of AF.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenoviridae
  • Animals
  • Atrial Fibrillation / genetics
  • Atrial Fibrillation / therapy*
  • Electrocardiography
  • Ether-A-Go-Go Potassium Channels / drug effects
  • Ether-A-Go-Go Potassium Channels / genetics*
  • Gene Transfer Techniques
  • Genetic Therapy / methods*
  • Green Fluorescent Proteins / pharmacology
  • Heart Atria / physiopathology
  • Mutation
  • Sus scrofa

Substances

  • Ether-A-Go-Go Potassium Channels
  • Green Fluorescent Proteins