According to behavioral momentum theory, preference and relative resistance to change in concurrent-chains schedules are correlated and reflect the relative conditioned value of discriminative stimuli. In the present study, we explore the generality of this relation by manipulating the temporal context within a concurrent-chains procedure through changes in the duration of the initial links. Consistent with previous findings, preference for a richer terminal link was less extreme with longer initial links across three experiments with pigeons. In Experiment 1, relative resistance to change and preference were related inversely when responding was disrupted with response-independent food presentations during initial links, replicating a previous finding with rats. However, more food was presented with longer initial links, confounding the disrupter and initial-link duration. In Experiment 2, presession feeding was used instead and eliminated the negative relation between relative resistance to change and preference, but relative resistance to change was not sensitive to relative terminal-link reinforcement rates. In Experiment 3, with more extreme relative terminal-link reinforcement rates, increasing initial-link duration similarly decreased preference and relative resistance to change for the richer terminal link. Thus, when conditions of disruption are equal and assessed under the appropriate reinforcement conditions, changes in temporal context impact relative resistance to change and preference similarly.
Keywords: behavioral momentum theory; concurrent chains; conditioned value; keypeck; pigeon; preference; resistance to change; response rates.