Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. Last year we successfully demonstrated that near-IR images can be used to guide a CO(2) laser ablation system for the selective removal of artificial caries lesions on smooth surfaces. The objective of this study was to test the hypothesis that two-dimensional near-infrared images of natural occlusal caries can be used to guide a CO(2) laser for selective removal. Two-dimensional NIR images were acquired at 1310-nm of extracted human molar teeth with occlusal caries. Polarization sensitive optical coherence tomography (PS-OCT) was also used to acquire depth-resolved images of the lesion areas. An imaging processing module was developed to analyze the NIR imaging output and generate optical maps that were used to guide a CO(2) laser to selectively remove the lesions at a uniform depth. Post-ablation NIR images were acquired to verify caries removal. Based on the analysis of the NIR images, caries lesions were selectively removed with a CO(2) laser while sound tissues were conserved. However, the removal rate varied markedly with the severity of decay and multiple passes were required for caries removal. These initial results are promising but indicate that the selective removal of natural caries is more challenging than the selective removal of artificial lesions due to varying tooth geometry, the highly variable organic/mineral ratio in natural lesions and more complicated lesion structure.