Structural changes of myofibrillar proteins from raw pork muscle and Cantonese sausage at different processing periods were elucidated using Raman spectroscopy. Fourier deconvolution combined with iterative curve fitting were used to analyze the amide I Raman band. Results from amide I, amide III, and C-C stretching vibrations in 890-1060 cm(-1) showed that α-helix decreased accompanied by an increase in β-sheet structure during the first 18 h, and a rebuilding process of secondary structures was observed at the rest stage due to proteolysis. The hierarchical cluster analysis results of amide I and amide III confirmed this rebuilding process. Changes in a doublet near 850 and 830 cm(-1) suggested that some tyrosine residues became buried in a more hydrophobic environment due to intermolecular interactions. Raman spectra in the 2855-2940 cm(-1) region suggested that the environment of aliphatic side chains might have been changed during the final stage and further confirmed above rebuilding process.