Multislice CT provides information on coronary luminal narrowing and on the structural abnormalities of the coronary arterial wall using densitometric analysis. We sought to investigate the effects of coronary luminal narrowing, structural abnormalities of the coronary arterial wall, and cardiovascular risk factors on regional and global myocardial blood flow (MBF) reserve.
Methods: We studied 68 patients (mean age ± SD, 61 ± 10 y; 41 men, 27 women) with an intermediate probability of coronary artery disease. We measured the severity of coronary stenoses and the fibroadipose, fibromuscular, and calcium components of the coronary arterial wall by 64-row multislice CT coronary angiography. We also measured regional and global MBF reserve by PET using (13)N-ammonia as a flow tracer at rest and after dipyridamole.
Results: One or more significant coronary stenoses (≥50% luminal narrowing) was present in 32 patients (47%), and nonsignificant stenoses were present in 15 patients (22%). Regional MBF reserve was significantly different in the territories perfused by normal coronary arteries, nonsignificant coronary stenoses, and significant coronary stenoses (P < 0.001). Calcium content was higher in the coronary arteries with significant or nonsignificant stenoses (0.95% ± 1.08% and 0.73% ± 0.93%, respectively) than in those without stenoses (0.11% ± 0.38%, P < 0.001). Significant coronary stenosis (P = 0.047) and calcium content (P = 0.017) were the only independent determinants of impaired regional MBF reserve using multivariate analysis. At multiple logistic regression analysis, the Framingham risk score, an index of global cardiovascular risk burden, was the only significant determinant of global MBF reserve (P = 0.028).
Conclusion: Coronary stenoses and coronary calcium content independently affect regional MBF reserve. Framingham risk score is the only significant determinant of global MBF reserve.