Chronic alcohol consumption is known to result in tissue injury, particularly in the liver, and is considered a major risk factor for cancers of the upper respiratory tract. Here we assessed the oxidative effects of subchronic ethanol consumption on DNA and lipids by measuring biomarkers 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and malondialdehyde (MDA), respectively. Physiological responses of pigs (n = 4) administered ethanol in drinking water for 39 days were compared with those of water-fed pigs (n = 4). Alcoholisation resulted in serum ethanol concentration of 1.90 g L(-1) and in a moderate but significant increase in alanine aminotransferase activity, an index of liver injury. However, between the alcoholised and control groups there were no significant differences in the levels of 8-oxodG (8-oxodG per 10(6) 2'deoxyguanosine) from leucocytes (2.52 ± 0.42 Vs 2.39 ± 0.34) or from target organs, liver, cardia and oesophagus. Serum MDA levels were also similar in ethanol-fed pigs (0.33 ± 0.04 μM) and controls (0.28 ± 0.03 μM). Interestingly, levels of 8-oxodG in cardia were positively correlated with those in oesophagus (Spearman correlation coefficient R = 1, P < 0.0001). Our results suggest that alcohol consumption may not cause oxidative damage to DNA and lipids as measured by 8-oxodG and MDA, respectively. The duration of alcoholisation and the potential alcohol-induced nutritional deficiency may be critical determinants of ethanol toxicity. Relevant biomarkers, such as factors involved in sensitization to ethanol-induced oxidative stress are required to better elucidate the relationship between alcohol consumption, oxidative stress and carcinogenesis.
Copyright © 2011 Elsevier GmbH. All rights reserved.