Promiscuity of carbonic anhydrase II. Unexpected ester hydrolysis of carbohydrate-based sulfamate inhibitors

J Am Chem Soc. 2011 Nov 16;133(45):18452-62. doi: 10.1021/ja207855c. Epub 2011 Oct 19.

Abstract

Carbonic anhydrases (CAs) are enzymes whose endogenous reaction is the reversible hydration of CO(2) to give HCO(3)(-) and a proton. CA are also known to exhibit weak and promiscuous esterase activity toward activated esters. Here, we report a series of findings obtained with a set of CA inhibitors that showed quite unexpectedly that the compounds were both inhibitors of CO(2) hydration and substrates for the esterase activity of CA. The compounds comprised a monosaccharide core with the C-6 primary hydroxyl group derivatized as a sulfamate (for CA recognition). The remaining four sugar hydroxyl groups were acylated. Using protein X-ray crystallography, the crystal structures of human CA II in complex with four of the sulfamate inhibitors were obtained. As expected, the four structures displayed the canonical CA protein-sulfamate interactions. Unexpectedly, a free hydroxyl group was observed at the anomeric center (C-1) rather than the parent C-1 acyl group. In addition, this hydroxyl group is observed axial to the carbohydrate ring while in the parent structure it is equatorial. A mechanism is proposed that accounts for this inversion of stereochemistry. For three of the inhibitors, the acyl groups at C-2 or at C-2 and C-3 were also absent with hydroxyl groups observed in their place and retention of stereochemistry. With the use of electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry (ESI-FTICR-MS), we observed directly the sequential loss of all four acyl groups from one of the carbohydrate-based sulfamates. For this compound, the inhibitor and substrate binding mode were further analyzed using free energy calculations. These calculations suggested that the parent compound binds almost exclusively as a substrate. To conclude, we have demonstrated that acylated carbohydrate-based sulfamates are simultaneously inhibitor and substrate of human CA II. Our results suggest that, initially, the substrate binding mode dominates, but following hydrolysis, the ligand can also bind as a pure inhibitor thereby competing with the substrate binding mode.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbohydrates / chemistry*
  • Carbonic Anhydrase II / antagonists & inhibitors*
  • Carbonic Anhydrase II / metabolism
  • Carbonic Anhydrase Inhibitors / chemistry
  • Carbonic Anhydrase Inhibitors / pharmacology*
  • Esters / chemistry*
  • Humans
  • Hydrolysis
  • Models, Molecular
  • Molecular Conformation
  • Structure-Activity Relationship
  • Sulfonic Acids / chemistry
  • Sulfonic Acids / pharmacology*

Substances

  • Carbohydrates
  • Carbonic Anhydrase Inhibitors
  • Esters
  • Sulfonic Acids
  • sulfamic acid
  • Carbonic Anhydrase II