It has been well established that tumor necrosis factor related apoptosis-inducing ligand (TRAIL) effectively induces apoptosis in tumor cells. However, tumor resistance to TRAIL, especially of hematological tumor cells, has become a major problem in the potential use of TRAIL in clinical practice. Among many factors that contribute to TRAIL resistance, overexpression of Bcl-2 is commonly seen in many kinds of tumors, particularly in lymphoma. In this study, we developed a lentivirus system that encodes recombinant human TRAIL cDNA for overexpression and Bcl-2 shRNA for down-regulation of Bcl-2 (lenti-TRAIL-shBcl-2) simultaneously. The efficiency of recombinant lentiviruses infecting different lymphoma cell lines was assessed by flow cytometric analysis and fluorescence microscopy. Reverse transcription polymerase chain reaction and Western blot assay were carried out to evaluate the expression of TRAIL and Bcl-2 in lymphoma cells after infection. We also examined the growth inhibition effect of recombinant lentivirus on lymphoma cell proliferation by CCK-8 (Cell Counting Kit-8) assay and its effect on bystander cells by flow cytometric analysis. The results showed that lymphoma cells were effectively infected by recombinant lentivirus and that TRAIL was exogenously expressed and Bcl-2 expression was down-regulated in lymphoma cells simultaneously. Results of this study demonstrated that lenti-TRAIL-shBcl-2 induced apoptosis in bystander cells as well as infected lymphoma cells and inhibited the growth of lymphoma cells.