To avoid detrimental interactions with intestinal microbes, the human epithelium is covered with a protective mucus layer that traps host defence molecules. Microbial properties such as adhesion to mucus further result in a unique mucosal microbiota with a great potential to interact with the host. As mucosal microbes are difficult to study in vivo, we incorporated mucin-covered microcosms in a dynamic in vitro gut model, the simulator of the human intestinal microbial ecosystem (SHIME). We assessed the importance of the mucosal environment in this M-SHIME (mucosal-SHIME) for the colonization of lactobacilli, a group for which the mucus binding domain was recently discovered. Whereas the two dominant resident Lactobacilli, Lactobacillus mucosae and Pediococcus acidilactici, were both present in the lumen, L. mucosae was strongly enriched in mucus. As a possible explanation, the gene encoding a mucus binding (mub) protein was detected by PCR in L. mucosae. Also the strongly adherent Lactobacillus rhamnosus GG (LGG) specifically colonized mucus upon inoculation. Short-term assays confirmed the strong mucin-binding of both L. mucosae and LGG compared with P.acidilactici. The mucosal environment also increased long-term colonization of L. mucosae and enhanced its stability upon antibiotic treatment (tetracycline, amoxicillin and ciprofloxacin). Incorporating a mucosal environment thus allowed colonization of specific microbes such as L. mucosae and LGG, in correspondence with the in vivo situation. This may lead to more in vivo-like microbial communities in such dynamic, long-term in vitro simulations and allow the study of the unique mucosal microbiota in health and disease.
© 2011 The Authors; Microbial Biotechnology © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.