An alternative to the standard echo-planar spectroscopic imaging technique is presented, spectroscopic imaging using concentrically circular echo-planar trajectories (SI-CONCEPT). In contrast to the conventional chemical shift imaging data, the sampled data from each set of concentric rings were regridded into Cartesian space. Usage of concentric k-space trajectories has the advantage of requiring significantly reduced slew rates than echo-planar spectroscopic imaging, allowing for the collection of higher spectral bandwidths and opening the door for high-bandwidth echo-planar styled spectroscopic imaging at higher magnetic fields. Before two-dimensional spatial and one-dimensional spectral encoding, the volume of interest was localized using the standard point-resolved spectroscopy sequence. The feasibility of using concentric k-space trajectories is demonstrated, and the spatial profiles and representative spectra are compared with the standard echo-planar spectroscopic imaging technique in a gray matter phantom containing metabolites at physiological concentrations and healthy human brain in vivo. The symmetric nature of the concentric circles also reduces the number of required excitations for a given resolution by a factor of two. Possible artifacts and limitations are discussed.
Copyright © 2011 Wiley Periodicals, Inc.