Background: Relatives of patients with major depressive disorder (MDD) and people who experienced early-life adversity are at risk for MDD. The aim of our study was to investigate whether unaffected first-degree healthy relatives (UHRs) of patients with MDD show changes in white matter fibre connections compared with healthy controls and whether there are interactions between early-life adversity and these microstructural changes.
Methods: Unaffected, healthy first-degree relatives of patients with MDD and healthy controls without any family history for a psychiatric disease underwent high angular resolution diffusion imaging with 61 diffusion directions. Data were analyzed with tract-based spatial statistics, and findings were confirmed with tractography.
Results: Twenty-one UHRs and 24 controls participated in our study. The UHRs showed greater fractional anisotropy than controls in the body and splenium of the corpus callosum, inferior fronto-occipital fasciculus (IFO), left superior longitudinal fasciculus (SLF) and right fornix. The UHRs who experienced more early-life adversity had greater fractional anisotropy than those with less early-life adversity in the splenium of the corpus callosum, fornix, IFO and SLF; in controls, early-life adversity was found to be associated with decreased fractional anisotropy in these fibre tracts.
Limitations: Studying participants' strategies for coping with early-life adversity would have been helpful. Crossing fibres intracts are a general limitation of the method used.
Conclusion: Altogether, our findings provide evidence for greater fractional anisotropy in UHRs and for interaction between early-life adversity and family risk on white matter tracts involved in cognitive-emotional processes. Whether stronger neural fibre connections are associated with more resilience against depression needs to be addressed in future studies.