Intercalant and intermolecular phonon assisted superconductivity in K-doped picene

Phys Rev Lett. 2011 Sep 23;107(13):137006. doi: 10.1103/PhysRevLett.107.137006. Epub 2011 Sep 21.

Abstract

K(3) picene is a superconducting molecular crystal with a critical temperature of T(c) = 7 or 18 K, depending on the preparation conditions. Using density functional theory we show that electron-phonon interaction accounts for T(c) 3-8 K. The average electron-phonon coupling, calculated by including the phonon energy scale in the electron-phonon scattering, is λ = 0.73 and ω(log) = 18.0 meV. Intercalant and intermolecular phonon modes contribute substantially (40%) to λ as also shown by the isotope exponents of potassium (0.19) and carbon (0.31). The relevance of these modes makes superconductivity in K-doped picene peculiar and different from that of fullerenes.