Epithelial invagination is a common feature of embryogenesis. An example of invagination morphogenesis occurs during development of the early eye when the lens placode forms the lens pit. This morphogenesis is accompanied by a columnar-to-conical cell shape change (apical constriction or AC) and is known to be dependent on the cytoskeletal protein Shroom3. Because Shroom3-induced AC can be Rock1/2 dependent, we hypothesized that during lens invagination, RhoA, Rock and a RhoA guanine nucleotide exchange factor (RhoA-GEF) would also be required. In this study, we show that Rock activity is required for lens pit invagination and that RhoA activity is required for Shroom3-induced AC. We demonstrate that RhoA, when activated and targeted apically, is sufficient to induce AC and that RhoA plays a key role in Shroom3 apical localization. Furthermore, we identify Trio as a RhoA-GEF required for Shroom3-dependent AC in MDCK cells and in the lens pit. Collectively, these data indicate that a Trio-RhoA-Shroom3 pathway is required for AC during lens pit invagination.