Maspin, a member of the serpin family of serine protease inhibitors, was originally identified as a tumor suppressor that is expressed in normal mammary epithelial cells but is reduced or absent in breast carcinomas. Early enthusiasm for maspin as a biomarker for disease progression has been tempered by clinical data that associates maspin with favourable outcomes in some studies and poor prognosis in others. Here, we review all of the published clinical studies for maspin in breast and ovarian cancers and propose that the apparent discordance between clinical reports is a consequence of differential cellular distribution of maspin. Indeed, it was thought that an extracellular pool of maspin possessed tumor suppressor activity, acting by inhibiting migration and increasing cell adhesion. Recent evidence from our group and others indicates, however, that the nuclear localization of maspin in cancer cells is necessary for its tumor suppressor activity. We provide additional data here to demonstrate that nuclear-localized maspin binds to chromatin and is required to effectively prevent cells from metastasizing. Our knowledge of other serpins that localize to the nucleus should help to inform future studies of nuclear maspin. Elucidation of the molecular mechanisms regulating the localization and activities of maspin should pave the way for the development of improved diagnostics and therapies for cancer.