The evolution of the dark currents and breakdown at elevated temperatures of up to 450 K are studied using thin AlAsSb avalanche regions. While the dark currents increase rapidly as the temperature is increased, the avalanche gain is shown to only have a weak temperature dependence. Temperature coefficients of breakdown voltage of 0.93 and 1.93 mV/K were obtained from the diodes of 80 and 230 nm avalanche regions (i-regions), respectively. These values are significantly lower than for other available avalanche materials at these temperatures. The wavelength dependence of multiplication characteristics of AlAsSb p-i-n diodes has also been investigated, and it was found that the ionization coefficients for electrons and holes are comparable within the electric field and wavelength ranges measured.