Effects of sodium chloride, phosphate type and concentration, and pump rate on beef biceps femoris quality and sensory characteristics

Meat Sci. 2005 Jun;70(2):205-14. doi: 10.1016/j.meatsci.2004.12.011. Epub 2005 Mar 4.

Abstract

Beef biceps femoris muscles (n=45) were used to evaluate the effect of enhancement with solutions comprising 2.0% sodium chloride and either sodium hexametaphosphate (SHMP), sodium tripolyphosphate (STPP), or tetrasodium pyrophosphate (TSPP) at either 0.2% or 0.4% of product weight. All solutions were injected into muscle samples at either 112% (12% pump) or 118% (18% pump) of raw product weight. Muscles treated with all three phosphate types had decreased (P<0.05) free water compared to untreated muscles (CNT), and while TSPP-treated muscles were able to bind greater (P<0.05) additional water than CNT, STPP- and SHMP-treated muscles did not differ (P>0.05) from CNT. Disregarding phosphate type, steaks with 0.4% phosphate inclusion bound more (P<0.05) water than those with 0.2% phosphate inclusion. Steaks treated with STPP or TSPP had decreased (P<0.05) cooking losses than CNT, while SHMP-treated steaks did not differ (P>0.05) from CNT. Steaks injected at 18% pump had greater (P<0.05) percent moisture, and did not differ (P>0.05) in free water, water binding, or cooking losses from steaks injected at 12% pump. Although there were no differences (P>0.05) in Warner-Bratzler shear force in this study, steaks with SHMP, STPP, and TSPP all were rated more tender, and juicier (P<0.05) by sensory panelists than CNT steaks or steaks enhanced only with sodium chloride. Regardless of phosphate type, steaks enhanced with 0.4% phosphate and those steaks at 18% pump received improved (P<0.05) sensory tenderness ratings compared to 0.2% phosphate and 12% pump, respectively. These results suggest that enhancing biceps femoris muscles with STPP or TSPP can improve water retention, yield, and palatability characteristics. Additionally, enhancement with a phosphate/salt solution at an 18% pump rate, compared to a 12% pump rate, can allow for improved sensory tenderness perceptions without decreasing product yields.