Virulence in human-pathogenic Yersinia species is associated with a plasmid-encoded type III secretion system that translocates a set of Yop effector proteins into host cells. One effector, YopE, functions as a Rho GTPase-activating protein (GAP). In addition to acting as a virulence factor, YopE can function as a protective antigen. C57BL/6 mice infected with attenuated Yersinia pestis generate a dominant H2-Kb-restricted CD8 T cell response to an epitope in the N-terminal domain of YopE (YopE69-77), and intranasal vaccination with the YopE69-77 peptide and the mucosal adjuvant cholera toxin (CT) elicits CD8 T cells that are protective against lethal pulmonary challenge with Y. pestis. Because YopE69-77 is conserved in many Yersinia strains, we sought to determine if YopE is a protective antigen for Yersinia pseudotuberculosis and if primary infection with this enteric pathogen elicits a CD8 T cell response to this epitope. Intranasal immunization with the YopE69-77 peptide and CT elicited a CD8 T cell response that was protective against lethal intragastric Y. pseudotuberculosis challenge. The YopE69-77 epitope was a major antigen (∼30% of splenic CD8 T cells were specific for this peptide at the peak of the response) during primary infection with Y. pseudotuberculosis, as shown by flow cytometry tetramer staining. Results of infections with Y. pseudotuberculosis expressing catalytically inactive YopE demonstrated that GAP activity is dispensable for a CD8 T cell response to YopE69-77. Determining the features of YopE that are important for this response will lead to a better understanding of how protective CD8 T cell immunity is generated against Yersinia and other pathogens with type III secretion systems.