The fundamental mechanisms that underlie platelet activation in atherothrombosis are still obscure. Oxidative stress is involved in central features of atherosclerosis. Platelet-derived microvesicles (PMVs) could be important mediators between oxidative stress and platelet activation. CD36 could be a receptor of PMVs, thus generating a PMV-CD36 complex. We aimed to investigate the detailed pathway by which oxidative damage contributes to platelet activation by the PMV-CD36 complex. We found that oxidized low-density lipoprotein stimulated the generation of PMVs. PMVs enhanced normal platelet activation, as assessed by the expression of integrin α(IIb)β₃, secretion of soluble P-selectin and platelet aggregation, but CD36-deficient platelets were not activated by PMVs. The function of the PMV-CD36 complex was mediated by the MKK4/JNK2 signaling axis. Meanwhile, PMVs increased the level of 8-iso-prostaglandin-F2α, a marker of oxidative stress, in a CD36- and phosphatidylserine-dependent manner. We concluded that PMVs are important mediators between oxidative stress and platelet activation. PMVs and CD36 may be effective targets for preventing platelet activation in cardiovascular diseases.