Some T cells react with lipid antigens bound to antigen-presenting molecule CD1d. Numbers and functions of a subset of such lipid-reactive T cells are reduced in patients with systemic lupus erythematosus (SLE) and their relatives, as well as in genetically susceptible and chemically induced animal models of lupus-like disease. We have reported that the germline deletion of CD1d exacerbates lupus, suggesting a protective role of these cells in the development of lupus. The use of a knockout mouse model in this study, however, did not allow examination of the role of these cells at different stages of disease. Here, we describe an approach to deplete CD1d-dependent T cells, which allowed us to investigate the role of these cells at different stages of disease in genetically lupus-prone NZB/NZW F1 (BWF1) mice. Repeated intravenous injections of large numbers of CD1d-transfected cells resulted in ∼50-75% reduction in these cells, as defined by the expression of CD4, NK1.1 and CD122, and lack of expression of CD62 ligand. TCR γδ (+)NK1.1(+) cells were also reduced in the recipients of CD1d-transfected cells as compared with control recipients. Such depletion of CD1d-reactive T cells in preclinical BWF1 mice resulted in disease acceleration with a significant increase in proteinuria and mortality. In older BWF1 mice having advanced nephritis, however, such depletion of CD1d-reactive T cells resulted in some disease improvement. Taken together, these data as well as our published studies suggest that CD1d-reactive T cells protect against the development of lupus in animal models. However, these cells appear to be unable to suppress established lupus nephritis in these animals, and might even play a disease aggravating role in late stages of disease.