Background: Dbait molecules are a new class of DNA repair inhibitors triggering false DNA damage signaling in cancer cells. Dbait has already been shown to be effective in combination with radiotherapy. The aim of this study was to assess the adjuvant impact of Dbait on chemotherapy in vitro and in mouse models of colorectal cancer.
Methods: We assessed DNA repair efficiency over time, in vitro, in human colon adenocarcinoma HT-29 (wild-type KRAS) and HCT-116 (mutated KRAS) cell lines treated with Dbait in combination with 5-fluorouracil and/or camptothecin. Genetically engineered mice spontaneously developing colorectal tumors in the intestines were selected for the evaluation of treatment efficacy.
Results: Dbait delayed the repair of DNA damage induced by chemotherapy in vitro. In APC (+/1638N) mutant mice, the combination of Dbait and chemotherapy decreased tumor size more effectively than chemotherapy alone (median size: 3.6 vs. 10.85 mm(2), P < 0.05). In APC (+/1638N)/KRAS ( V12G ) mutant mice, animals treated with a combination of Dbait and chemotherapy survived significantly longer than animals treated by chemotherapy alone (median survival: 210 vs. 194 days, P < 0.05). A quarter of all the animals treated by chemotherapy alone died as rapidly as untreated animals, whereas the first death was delayed by 29 days by the addition of Dbait. No increase in toxicity due to Dbait was observed in either mouse model.
Conclusions: The use of Dbait to inhibit DNA repair may be an effective additional treatment for increasing the efficacy of chemotherapy in colon or rectal cancer, independently of KRAS status.