Objective: The contribution of innate immunity responsible for beta-cell destruction in fulminant type 1 diabetes (FT1D) and slowly progressive insulin-dependent diabetes mellitus (SPIDDM) is unclear.
Research design and methods: Islet-cell expression of Toll-like receptors (TLRs) including TLR3 and TLR4, the cytoplasmic retinoic acid-inducible protein I (RIG-I)-like helicases, RIG-I, melanoma differentiation-associated gene-5 and laboratory of genetics and physiology 2 in the affected islets were studied immuno-histochemically on three pancreases obtained 2-5 days after the onset of FT1D and a pancreas from a patient with SPIDDM.
Results: Laboratory of genetics and physiology 2 and RIG-I strongly expressed in beta cells in all three FT1D pancreases infected with enterovirus (VP1 antigen). Melanoma differentiation-associated gene-5 was hyper-expressed in all subsets of islet cells including beta cells and alpha cells. TLR3 and TLR4 were expressed in mononuclear cells that infiltrated to islets. IFN-alpha/beta was strongly expressed in islet cells. In contrast, pancreas of a patient with SPIDDM, enterovirus and expression of innate immune receptors including RIG-I, melanoma differentiation-associated gene-5, hyperexpression of laboratory of genetics and physiology 2 and mononuclear cells, which were positive for TLR3 and TLR4, and infiltration to the islets were not detected.
Conclusions: These findings demonstrate that retinoic acid-inducible protein I (RIG-I)-like helicases and TLRs play a crucial role on beta-cell destruction in enterovirus-induced FT1D. The presence of distinct mechanism(s) of slowly progressive beta-cell failure in SPIDDM was suggested.
Copyright © 2011 John Wiley & Sons, Ltd.