Inhibition of hematopoietic protein tyrosine phosphatase augments and prolongs ERK1/2 and p38 activation

ACS Chem Biol. 2012 Feb 17;7(2):367-77. doi: 10.1021/cb2004274. Epub 2011 Nov 17.

Abstract

The hematopoietic protein tyrosine phosphatase (HePTP) is implicated in the development of blood cancers through its ability to negatively regulate the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. Small-molecule modulators of HePTP activity may become valuable in treating hematopoietic malignancies such as T cell acute lymphoblastic leukemia (T-ALL) and acute myelogenous leukemia (AML). Moreover, such compounds will further elucidate the regulation of MAPKs in hematopoietic cells. Although transient activation of MAPKs is crucial for growth and proliferation, prolonged activation of these important signaling molecules induces differentiation, cell cycle arrest, cell senescence, and apoptosis. Specific HePTP inhibitors may promote the latter and thereby may halt the growth of cancer cells. Here, we report the development of a small molecule that augments ERK1/2 and p38 activation in human T cells, specifically by inhibiting HePTP. Structure-activity relationship analysis, in silico docking studies, and mutagenesis experiments reveal how the inhibitor achieves selectivity for HePTP over related phosphatases by interacting with unique amino acid residues in the periphery of the highly conserved catalytic pocket. Importantly, we utilize this compound to show that pharmacological inhibition of HePTP not only augments but also prolongs activation of ERK1/2 and, especially, p38. Moreover, we present similar effects in leukocytes from mice intraperitoneally injected with the inhibitor at doses as low as 3 mg/kg. Our results warrant future studies with this probe compound that may establish HePTP as a new drug target for acute leukemic conditions.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Enzyme Activation / drug effects
  • Enzyme Inhibitors / chemistry*
  • Enzyme Inhibitors / pharmacology*
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3 / metabolism*
  • Models, Molecular
  • Protein Tyrosine Phosphatases / antagonists & inhibitors*
  • Protein Tyrosine Phosphatases / chemistry
  • Protein Tyrosine Phosphatases / metabolism
  • Structure-Activity Relationship
  • T-Lymphocytes / drug effects
  • T-Lymphocytes / enzymology
  • p38 Mitogen-Activated Protein Kinases / metabolism*

Substances

  • Enzyme Inhibitors
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • p38 Mitogen-Activated Protein Kinases
  • Protein Tyrosine Phosphatases