Dendritic cells (DCs) are potent antigen-presenting cells critical in regulating the adaptive immune response. The role of DCs is dichotomous; they may both present antigens and the appropriate stimulatory molecules to initiate an adaptive immune response, or they may induce tolerance and release anti-inflammatory signals. The activation of immature DCs, required for the expression of the necessary costimulatory T cell molecules, is dependent on pattern recognition receptors. In addition to the pathogen-derived ligands of pattern recognition receptors, several damage-associated molecular patterns (DAMPs) have recently been shown to interact with DCs and dramatically affect their ultimate function. The complex interplay of DAMPs on DCs is clinically important, with implications for transplantation, tumor immunity, autoimmunity, chronic inflammation and other conditions of sterile inflammation such as ischemia reperfusion injury. In this review, we will focus on the role of DAMPs in DC function.
Copyright © 2011 S. Karger AG, Basel.