Caulobacter crescentus uses a multi-layered system of oscillating regulators to program different developmental fates into each daughter cell at division. This is achieved by superimposing gene expression, subcellular localization, phosphorylation, and regulated proteolysis to form a complex regulatory network that integrates chromosome replication, segregation, polar differentiation, and cytokinesis. In this review, we outline the current state of research in the field of Caulobacter development, emphasizing new findings that elaborate how the developmental program is modulated by factors such as the environment or the metabolic state of the cell.
© 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.