The C terminus of formin FMNL3 accelerates actin polymerization and contains a WH2 domain-like sequence that binds both monomers and filament barbed ends

J Biol Chem. 2012 Jan 27;287(5):3087-98. doi: 10.1074/jbc.M111.312207. Epub 2011 Nov 17.

Abstract

Formin proteins are actin assembly factors that accelerate filament nucleation then remain on the elongating barbed end and modulate filament elongation. The formin homology 2 (FH2) domain is central to these activities, but recent work has suggested that additional sequences enhance FH2 domain function. Here we show that the C-terminal 76 amino acids of the formin FMNL3 have a dramatic effect on the ability of the FH2 domain to accelerate actin assembly. This C-terminal region contains a WASp homology 2 (WH2)-like sequence that binds actin monomers in a manner that is competitive with other WH2 domains and with profilin. In addition, the C terminus binds filament barbed ends. As a monomer, the FMNL3 C terminus inhibits actin polymerization and slows barbed end elongation with moderate affinity. As a dimer, the C terminus accelerates actin polymerization from monomers and displays high affinity inhibition of barbed end elongation. These properties are not common to all formin C termini, as those of mDia1 and INF2 do not behave similarly. Interestingly, mutation of two aliphatic residues, which blocks high affinity actin binding by the WH2-like sequence, has no effect on the ability of the C terminus to enhance FH2-mediated polymerization. However, mutation of three successive basic residues at the C terminus of the WH2-like sequence compromises polymerization enhancement. These results illustrate that the C termini of formins are highly diverse in their interactions with actin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / genetics
  • Actin Cytoskeleton / metabolism*
  • Actins / genetics
  • Actins / metabolism*
  • Amino Acid Substitution
  • Animals
  • Formins
  • Mice
  • Mutation, Missense
  • Protein Binding
  • Protein Multimerization / physiology*
  • Protein Structure, Tertiary
  • Proteins / genetics
  • Proteins / metabolism*

Substances

  • Actins
  • FMNL3 protein, mouse
  • Formins
  • Proteins