The morphology-dependent photocatalysis for rhodamine B degradation over Bi2WO6 hierarchical nanostructure

J Nanosci Nanotechnol. 2011 Sep;11(9):7802-6. doi: 10.1166/jnn.2011.4740.

Abstract

In this paper, the nanostructured Bi2WO6 with different hierarchical morphologies was synthesized via a warmly hydrothermal route. The structure and morphology of the as-prepared Bi2WO6 products were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), UV-vis absorption spectroscopy (UV-Vis) and N2-sorption analysis. The photocatalytic efficiency of Bi2WO6 was investigated by photodegradation of rhodamine B (RhB) under visible-light irradiation. The present work demonstrated that Bi2WO6 with four different hierarchical structures was effective visible-light-driven photocatalytic functional material for environmental purification. Moreover, the nest-like Bi2WO6 exhibited superior photocatalytic effects on rhodamine B degradation compared with other three Bi2WO6 morphologies. The excellent catalytic effect of the nest-like Bi2WO6 was attributed to its unique structural property and large surface area. The relationship between morphology and photocatalytic performance was discussed in detail. The photocatalytic mechanism for the degradation of RhB was also investigated, which revealed the important role of morphology in improving the photocatalyitc activities of Bi2WO6.