Glioblastomas (GBMs) are the most common primary brain tumors with poor prognosis. CD133 has been considered a putative marker of cancer stem cells (CSCs) in malignant cancers, including GBMs. MicroRNAs (miRNAs), highly conserved small RNA molecules, may target oncogenes and have potential as a therapeutic strategy against cancer. However, the role of miRNAs in GBM-associated CSCs remains mostly unclear. In this study, our miRNA/mRNA-microarray and RT-PCR analysis showed that the expression of miR145 (a tumor-suppressive miRNA) is inversely correlated with the levels of Oct4 and Sox2 in GBM-CD133(+) cells and malignant glioma specimens. We demonstrated that miR145 negatively regulates GBM tumorigenesis by targeting Oct4 and Sox2 in GBM-CD133(+). Using polyurethane-short branch polyethylenimine (PU-PEI) as a therapeutic-delivery vehicle, PU-PEI-mediated miR145 delivery to GBM-CD133(+) significantly inhibited their tumorigenic and CSC-like abilities and facilitated their differentiation into CD133(-)-non-CSCs. Furthermore, PU-PEI-miR145-treated GBM-CD133(+) effectively suppressed the expression of drug-resistance and anti-apoptotic genes and increased the sensitivity of the cells to radiation and temozolomide. Finally, the in vivo delivery of PU-PEI-miR145 alone significantly suppressed tumorigenesis with stemness, and synergistically improved the survival rate when used in combination with radiotherapy and temozolomide in orthotopic GBM-CD133(+)-transplanted immunocompromised mice. Therefore, PU-PEI-miR145 is a novel therapeutic approach for malignant brain tumors.
Copyright © 2011 Elsevier Ltd. All rights reserved.